Banque de données en santé publique

Aide

Lien permanent : http://bdsp-ehesp.inist.fr/vibad/index.php?action=getRecordDetail&idt=472134

Export

Sélection :

Reliability Data Update Method (RDUM) based on living PSA for emergency diesel generator of Daya Bay nuclear power plant.

Auteur
ZUBAIR (Muhammad) PAK. Department of Basic Sciences. University of Engineering and Technology (Uet). Taxila.; ZHANG ZHIJIAN
Collectivité auteur
College of Nuclear Science and Technology. Harbin Engineering University. Nangang District Harbin. CHN
Source
SAFETY SCIENCE, Vol 59, 2013, pages 72-77, réf. 1p.
Type de document
ARTICLE (DOCUMENT PAPIER)
Langue
Anglais
Résumé
In the field of Living Probabilistic Safety Assessment (LPSA) the reliability data updating is an important factor. In risk analysis equipment failure data is needed to estimate the frequencies of events contributing to risk posed by a facility. Five years data of Emergency Diesel Generator (EDG) of Daya Bay Nuclear Power Plant (NPP) has been studied in this paper. The data updating process has been done by using two methods (i.e.) classical method and Bayesian method. The aim of using these methods is to calculate operational failure rate (lambda) and demand failure probability (p). The results show that operational failure rate is 1.7E-3 per hour and demand failure probability is 2.4E-2 per day of Daya Bay NPP. By comparing the results obtain from classical and Bayesian method with EDF (Electric De France) it is concluded that the design and construction of Daya Bay NPP is very different with EDF so reliability parameters used in Daya Bay NPP is based on classical method.
Mots-clés BDSP
Fiabilité Mise à jour Méthodologie Centrale nucléaire Estimation
Mots-clés Pascal
Fiabilité Mise à jour Méthodologie Générateur électrique Groupe électrogène Urgence Centrale nucléaire Industrie nucléaire Méthode Bayes Paramètre Taux défaillance Estimation
Mots-clés Pascal anglais
Reliability Updating Methodology Electric generator Generating set Emergency Nuclear power plant Nuclear industry Bayes methods Parameter Failure rate Estimation
Provenance

Inist-CNRS - Institut de l'Information Scientifique et Technique

Identifiant BDSP
472134
Création de la notice
2013-10-15
Dernière mise à jour
2013-10-15

Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d'une licence CC by NC-SA BDSP

Rechercher sur le web